Parallel Algorithms for Triangular Periodic Sylvester-Type Matrix Equations
نویسندگان
چکیده
We present parallel algorithms for triangular periodic Sylvester-type matrix equations, conceptually being the third step of a periodic Bartels–Stewart-like solution method for general periodic Sylvester-type matrix equations based on variants of the periodic Schur decomposition. The presented algorithms are designed and implemented in the framework of the recently developed HPC library SCASY and are based on explicit blocking, 2-dimensional block cyclic data distribution and a wavefront-like traversal of the right hand side matrices. High performance is obtained by rich usage of level 3 BLAS operations. It is also demonstrated how several important key concepts of SCASY regarding communications and the treatment of quasi-triangular coefficient matrices are generalized to the periodic case. Some experimental results from a distributed memory Linux cluster demonstrate are also presented.
منابع مشابه
Contributions to Parallel Algorithms for Sylvester-type Matrix Equations and Periodic Eigenvalue Reordering in Cyclic Matrix Products
This Licentiate Thesis contains contributions in two different subfields of Computing Science: parallel ScaLAPACK-style algorithms for Sylvester-type matrix equations and periodic eigenvalue reordering in a cyclic product of matrices. Sylvester-type matrix equations, like the continuous-time Sylvester equation AX −XB = C, where A of size m×m, B of size n×n and C of size m×n are general matrices...
متن کاملAlgorithms and Library Software for Periodic and Parallel Eigenvalue Reordering and Sylvester-Type Matrix Equations with Condition Estimation
This Thesis contains contributions in two different but closely related subfields of Scientific and Parallel Computing which arise in the context of various eigenvalue problems: periodic and parallel eigenvalue reordering and parallel algorithms for Sylvestertype matrix equations with applications in condition estimation. Many real world phenomena behave periodically, e.g., helicopter rotors, r...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملRecursive Blocked Algorithms for Solving Periodic Triangular Sylvester-Type Matrix Equations
Recently, recursive blocked algorithms for solving triangular one-sided and two-sided Sylvester-type equations were introduced by Jonsson and K̊agström. This elegant yet simple technique enables an automatic variable blocking that has the potential of matching the memory hierarchies of today’s HPC systems. The main parts of the computations are performed as level 3 general matrix multiply and ad...
متن کاملParallel Algorithms and Condition Estimators for Standard and Generalized Triangular Sylvester-Type Matrix Equations
We discuss parallel algorithms for solving eight common standard and generalized triangular Sylvester-type matrix equation. Our parallel algorithms are based on explicit blocking, 2D block-cyclic data distribution of the matrices and wavefront-like traversal of the right hand side matrices while solving small-sized matrix equations at different nodes and updating the rest of the right hand side...
متن کامل